Rover Documentation
Tracing with Perf, Conversion to CTF, and analysis with

TraceCompass
Version June 17, ?01’7
Implementation Mustafa Ozcelikérs — mozcelikors@gmail.com
Supervision € revision — Robert Hottger robert.hoettger@fh-dortmund.de

University of Applied Sciences and Arts Dortmund
IDiAL Institute, Project AMALTHEA4public
BMBF Fund.Nb. 01-—S14029K

cpuo
cpus

[[orthon 15
T [

cpu2 — fimimimil
cpu3 — il i

- - ;JJ il 11 ‘JL‘:L,];;‘,:L;‘fle:

T 95829063211 0UIEAT W

S0

5 ContolFlow

1 Scope

This documentation describes (a) the generation of Perf traces [3] on a Linux system, (b) an approach to
convert perf traces to the CTF (Common Tracing Format) format [2], and (c) the CTF import to an analysis
tool e.g. TraceCompass [1].

2 Installing BabelTrace

The perf module is already included with the Linux kernel but requires a LibBabelTrace specific build for the
conversion support to CTF. Hence, BabelTrace has to be installed first. Therefore, the repository list of the
Raspberry Pi has to be up to date:

1 sudo apt—get update

The following command installs the LibBabelTrace module:

1 sudo apt-get install libbabeltrace-ctf-dev libbabeltrace-ctfl libbabeltracel
libbabeltrace—-dev python3-babeltrace

In addition, the module’s dependencies must be installed as well via:

1 sudo apt—get install dh-autoreconf bison libdw-dev libelf-dev flex uuid-dev
libpopt-dev

Afterwards, the following commands should be used in order to clone, configure, build, and install LibBabel-
Trace:

4 TRACING PROCESSES AND THREADS

cd /home/pi

sudo git clone git://git.efficios.com/babeltrace.git

cd babeltrace

sudo ./bootstrap

sudo ./configure --prefix=/opt/libbabeltrace LDFLAGS=-L/usr/local/lib
sudo make -j4 prefix=/opt/libbabeltrace

sudo make install prefix=/opt/libbabeltrace

N O Ut W=

3 Building Perf with BabelTrace support

After LibBabelTrace is installed, perf should be rebuilt from the Linux kernel with the babeltrace support. By
using the following command, the dependencies and features regarding the new perf build can be installed:

1 sudo apt—-get install libnewt-dev binutils—-arm—none-eabi libcrypto++-dev
binutils-multiarch-dev libunwind-dev systemtap-sdt-dev libssl-dev libperl-
dev libiberty-dev

Having all the dependencies, one should clone, build, and install the following linux repository with a LibBa-
belTrace adapted perf that supports data conversion via:

cd /home/pi

sudo git clone git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux.git
cd linux/tools/perf/

sudo git checkout perf/core

sudo LIBBABELTRACE=1 LIBBABELTRACE_DIR=/opt/libbabeltrace/ make

sudo LIBBABELTRACE=1 LIBBABELTRACE_DIR=/opt/libbabeltrace/ make install

SO W N

This will create a perf executable located at the /home/pi/linux/tools/perf/ directory.

4 'Tracing processes and threads

4.1 Option 1: Tracing Processes and Threads Manually

In order to record a system trace for e.g. 15 seconds, the following command can be used while the applications
are running:

1 sudo ./home/pi/linux/tools/perf/perf sched record -- sleep 15

This command creates a perf trace file namely perf.data. Since the Eclipse TraceCompass tool does not
support the perf format directly, the perf trace can be converted to the CTF format via:

1 sudo LD_LIBRARY PATH=/opt/libbabeltrace/lib ./home/pi/linux/tools/perf/perf
data convert —--to-ctf=./ctf

The command above should be called within the path where perf.data is located. In order to avoid having
to do this, the input argument can also be used to specify the location of the perf trace e.g.:

1 sudo LD_LIBRARY PATH=/opt/libbabeltrace/lib ./home/pi/linux/tools/perf/perf
data convert -i=/path/to/perf.data --to-ctf=./ctf

In order to use the trace in Eclipse TraceCompass on a Windows operating system, the CTF trace can be
archived by using the following command:

1 sudo tar -czvf trace.tar.gz ctf/

4.2 Option 2: Tracing processes and threads using a script

In order to trace and manually convert the trace, the following shell script TraceLinuxProcesses.sh (lo-
cated at src/tracing) can be used. The script should have the following content:

Rover Documentation: Tracing of Linux Processes and Threads using Rover Implementations 20of 5

5 VISUALIZATION AND INTERPRETATION OF THE TRACE

1 #!/bin/bash
2 args=("$Q")
3 trace_name=${args[0]}
4 seconds=${args[1l]}
5 perf_directory=${args[2]}
7 if ["$#" -ne 3]; then
8 echo "Entered arguments seem to be incorrect"”
9 echo "Right usage: sudo TracelLinuxProcesses.sh <trace_name> <period> <
path_to_perf>"
10 echo "e.g. sudo TraceLinuxProcesses.sh APP4MC_Trace 15 /home/pi/linux/
tools/perf"
11 else
12 echo "### Creating directory.."
13 sudo mkdir out_$trace_ name/
14 echo "### Writing out process names.."
15 ps —aux >> out_$trace_name/Processes_List.txt
16 echo "### Tracing with perf for $seconds seconds.."
17 sudo $perf directory/./perf sched record -o out_S$trace_name/perf.data —-
sleep $seconds
18 echo "### Converting to data to CTF (Common Tracing Format).."
19 sudo LD_LIBRARY PATH=/opt/libbabeltrace/lib $perf directory/./perf data
convert -i out_S$trace_name/perf.data —--to-ctf=./ctf
20 sudo tar -czvf out_$trace_name/trace.tar.gz ctf/
21 sudo rm -rf ctf/
23 echo "### Process IDs are written to out_S$trace_name/Processes_List.txt"
24 echo "### Trace in Perf format is written to out_S$trace_name/perf.data"
25 echo "### Trace in CTF format is written to out_$trace_name/trace.tar.gz"
26 echo "### Exiting.."
27 fi
To run the scrip with root privileges, execute:
1 sudo chmod 777 TracelLinuxProcesses.sh

The provided script takes three arguments: trace name, amount of time to trace, installed perf directory. An
example way to call this script is shown below which traces the system for 15 seconds and creates a folder
out_rover_tracel using the perf object located at /home/pi/linux/tools/perf/ directory:

1 sudo TracelinuxProcesses.sh out_rover_tracel 15 /home/pi/linux/tools/perf

The script produces an output directory which contains perf format data, ctf format and the process id list to
interpret the output.

5 Visualization and Interpretation of the Trace

By using Eclipse TraceCompass, which can be downloaded from http://www.tracecompass.org, traces in CTF
format can be interpreted. By choosing the trace file by selecting File — Import menu items, the trace can be
imported into Eclipse TraceCompass seen in Figure 1.

TraceCompass enables users to analyze a system regarding call graphs, threads, context switches, cpu usage,
critical path, I/O, control flow, and resources which can be seen as (1) in the Figure 1. The control flow window
(2) shows each process state with respect to time including the transitions along all the processes. System-wide
CPU usage and individual processes’” CPU usages are shown in the CPU Usage window which is shown as (3)
in the figure. Therefore, if the system has 4 cores, the CPU usage of up to 400 percent could be observed. The
resources window (shown as (4)) depicts how processes are distributed amongst the existing cores with respect
to time. Therefore, the load balancing could be roughly observed from this view by simply looking at each of
the cores. Moreover, using the resources window, one can measure and estimate the timing properties of the
scheduling done by the kernel. Finally, the trace event list (shown as (5)) can be used to see the exact events
that occurred in a specific time frame selected in another view.

Rover Documentation: Tracing of Linux Processes and Threads using Rover Implementations 3of5h

6 MAKING THREAD NAMES VISIBLE TO TRACECOMPASS AND MONITORING CORE
UTILIZATION OF THREADS

[ol o5
-):(-Ece Compafs. . A
File Window Help Zl
r[\:,PmJec... @ = 0 =b Control Flow 532 1= Resources 7 = 0O
=8 v @ e neI| R CIERSIR-L = TR A ME RN
Al - 1970 Oca0l (01:39:16 01:39:17 -
Process o 01:39:16 01:39:17 .~ Bdf
Es — - - -
ksoftirgd/3 19 | CPUD
: CPU1
7 Views apachez 852 : : : PU2
E¢ Active Thread tepanel 1089 | | ! CPU3
a '-_ﬂ- Call Graph Analysis Xorg 839 — o~ ‘
& Flame Graph python 1754 L W
| Function Durati hostapd 822 - 5
T Context switch = dnsmasq 664 . |
.= r ksoftirqd/2 15 : - =
4 mn 3 4 m (2 4 mn 3
a T Critical Path —— ==
3 Critical Flow Vie| |~ ©
5 Input/Output Timestamp Channel CPU Event type Contents -
> 1B Kemel memaory usa {)ﬂ <srch> <srch= <srch> =srche <srch>
4 A Linux Kemel 01:33:12,631 155044 perf_stream_2 1 schedisched_stat_runti perf_ip=0x80053900, perf_tid=1785, perf_pid=1785, perf_id=80, perdf_period=!
E_‘ Control Flow 01:39:12.641 152 856 perf_stream 2 1 sched:sched_stat_runti perf_ip=0x80053900, perf_tid=1785, perf_pid=1785, perf_id=60, perf_period=Y
E-"%RE‘;““E“B(01:39:12.651153 221 perf_stream_2 1 sched:sched_stat_runti perf_ip=0x80053900, perf_tid=1785, perf_pid=1785, perf_id=60, perf_period=¢
1
. t"g :”ﬁ . e 01:39:12.561 147 536 perf stream_2 1 sched:sched_stat_runti perf_ip=0x30053900, perf_tid=1785, perf_pid=1785, perf_id=60, perf_period=t
’ Y T"S:; t_at_ atene 01:3912671151 763 perf_stream 2 1 sched:sched_stat_runti perf_ip=0x80052000, perf_tid=1785, perf_pid=1785, perf_id=60, perf_period=:
g m atistics -
011:32:12.681 149 727 nerf stream 2 1 schedisched stat runti nerf in=(hA0053900 nerf HA=1785 nerf nid=1785 nerf id=A0 nerf nerind=t
4 n [a4 mn L &
g Control £ = 0 Il Histogram 52 :?.41‘ = 4
: TID Process * CPU Usage Selectic * 31
type filter text 1754 python |E 200 Selecti & JI J | H L
19 ksoftirgd3 Gl il . |J W I
852 apache? = « 013315829063 212 01:35:17.843 720 682
1031 Ixpanel :100 -
15 ksoftirgd/2 o i R I.l u
1473 python 664720 546 0133216
420 kworker/2: = f T T T !
g 01:39:15.829 063 211 01:39:17.329 063 211
b Contrel Flow
L

Figure 1: Eclipse TraceCompass

6 Making Thread Names Visible to TraceCompass and Monitoring

Core Utilization of Threads

In order to monitor core utilization of each thread using Linux shell, first the thread names of each thread should
be registered in user application. That is, using the pthread_setname_np () function after each thread is
created, which is already implemented in the Rover project. Once this function is used in the implementation,
the Linux command name of the thread will be overwritten. This helps Linux tools and TraceCompass recognize
the thread name and be able to show the thread name when tracing.

Implemented scripts help to monitor threads of a process easily. The scripts are located in the rover project

repository and are briefly explained below.

The following script can be used in order to monitor the core utilization of every registered thread

(MonitorThreads.sh):

1 args=("$@")

2 process_name=${args[0]}

4 if ["$#" -ne 1]; then

5 echo "Entered arguments seem to be incorrect"

6 echo "Right usage: MonitorThreads.sh <process_name>"
7 echo "e.g. MonitorThreads.sh <process_name>"

8 else

9 pid=$ (pgrep -f $process_name -0)

10 top H -p $pid

11 fi

Similarly, by using the ListThreads.sh given below, one can list thread names and thread ID’s of all the
threads of a process given its process name.

Rover Documentation: Tracing of Linux Processes and Threads using Rover Implementations

40f 5

REFERENCES

1 args=("$Q")

2 process_name=${args[0]}

3 if ["$#" -ne 1]; then

4 echo "Entered arguments seem to be incorrect"

5 echo "Right usage: ListThreads.sh <process_name>"
6 echo "e.g. ListThreads.sh <process_name>"

7 else

8 pid=$ (pgrep -f $process_name -0)

9 ps H -p $pid -o ’'pid tid cmd comm’

10 fi

The Figure 2 depicts the output from the MonitorThreads.sh.

@ pi@raspberrypi: ~ (= | 1O |-

PR NI RES SHR 5 $CPU 3MEM TIME+ COMMAND |

2 125644 2400 2 0 D 5.: 3 0:01.1¢ emper =

Figure 2: MonitorThreads.sh output

References

[1] TraceCompass consortium. Eclipse Trace Compass. https://projects.eclipse.org/projects/
tools.tracecompass. Accessed: 2017-06-01.

[2] Various contributors. Babeltrace - an open source trace format converter. http://diamon.org/
babeltrace/. Accessed: 2017-06-01.

[3] Various contributors. perf: Linux profiling with performance counters. https://perf.wiki.kernel.
org/index.php/Main_Page. Accessed: 2017-06-01.

Rover Documentation: Tracing of Linux Processes and Threads using Rover Implementations 50of 5

